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ARTICLE INFO ABSTRACT

Keywords: Automatic Speech Recognition (ASR) systems can be trained to achieve remarkable performance given large
Unsupervised ASR amounts of manually transcribed speech, but large labeled data sets can be difficult or expensive to acquire
Survey for all languages of interest. In this paper, we review the research literature to identify models and ideas

Speech segmentation

. that could lead to fully unsupervised ASR, including unsupervised sub-word and word modeling, unsupervised
Cross-modal mapping

segmentation of the speech signal, and unsupervised mapping from speech segments to text. The objective of
the study is to identify the limitations of what can be learned from speech data alone and to understand the
minimum requirements for speech recognition. Identifying these limitations would help optimize the resources
and efforts in ASR development for low-resource languages.

1. Introduction

What can be learned from a raw speech signal? This question has
practical implications for low-resource Automatic Speech Recognition
(ASR) and is also relevant for the study of human language acquisition.
Modern ASR systems rely on large amounts of annotated speech to
learn accurate speech representation and recognition, and they can
achieve remarkable accuracy for resource-rich languages like English.
At the time of writing, the state-of-the-art ASR model for English, which
achieved 1.9% word error rate on clean test data (Gulati et al., 2020),
was trained using more than 900 h of labeled speech. For a language
like Arabic, which includes various dialects with some annotated re-
sources, the word error rate using supervised methods is much higher:
13% for standard Arabic, and around 40% for dialects (Ali et al., 2017).
Many languages and dialects do not have any annotated resources or
even a standard written form. Acquiring and labeling large datasets can
certainly lead to better performance, but other factors could potentially
be exploited to improve performance much more efficiently using the
existing resources.

We know that humans manage to acquire language without reliance
on such massive resources or direct supervision—although other envi-
ronmental and interactive cues certainly help since language is rarely
used in isolation. Still, identifying what can be learned from the speech
signal alone can illuminate some aspects of language acquisition on the
one hand' and aid the construction of ASR systems for low-resource
languages on the other. Our objective in this paper is to present relevant
literature that can pave the way to unsupervised ASR : how to achieve
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reasonable ASR performance without acquiring labeled datasets. By
assimilating various research efforts in this vein we hope that a clearer
picture would emerge about the challenges presented by this task and
promising directions for future work.

Supervised ASR models implicitly address various sub-problems
without needing to explicitly model each one of them, as demonstrated
in recent end-to-end neural models (Synnaeve et al.,, 2019). These
sub-problems include segmentation, sub-word and word modeling, han-
dling speaker and environmental variations, and classification into text
labels. In the absence of transcribed speech for supervision, each of
these sub-problems presents a challenge that has to be addressed, often
explicitly and sometimes independently of the other sub-tasks. The
works we review in this paper are categorized according to the sub-task
they attempt to address. Based on the wide range of works we studied,
we outline a feasible framework for completely unsupervised ASR in
Fig. 1.

We summarize the process of unsupervised speech recognition as
follows: given a raw signal corresponding to an utterance, we need
to identify the meaningful units in the sound stream. This is the
process of segmentation, which can be analyzed at multiple levels—
phones, syllables, words, and collocations. Given the variable nature
of speech, which arises from different speaker characteristics, envi-
ronmental conditions, and other factors, we need to find suitable ab-
stract representations of the raw speech segments to aid generalization.
Learning features that are linguistically relevant and discriminative can
be carried out at the frame and sub-word level (sub-word modeling) or

1 For a review of computational models of language acquisition, see Risénen (2012).
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Fig. 1. A high-level sketch of unsupervised ASR pipeline and possible sub-tasks.

word level (spoken word embeddings). These representations ideally
summarize the phonetic and/or semantic content of each segment.
In Fig. 1, unsupervised sub-word and word modeling is shown as a
combination of the feature extraction and embedding blocks, where
features could be learned at the level of individual frames and/or longer
segments. After segmentation and embedding, the segment embeddings
should be clustered and classified into similar units—to identify unique
word types, for instance. Identifying recurring patterns in the sound
stream and clustering them into coherent units is what we call acoustic
unit discovery, which could be achieved using either full or partial
segmentation and clustering. Unsupervised ASR could be tackled with
various approaches, and we attempt to summarize the possible ap-
proaches in the figure by showing the alternative routes that could be
taken, where some steps could be skipped, combined, or approached
in an alternating manner; in particular, we find that segmentation,
embedding, and clustering can be effectively modeled together instead
of as separate processes.

Unsupervised learning can only discover recurring patterns in the
input signal and the relationships between those patterns. In speech,
for example, the discovered patterns would not necessarily align with
orthographically valid units like words in a dictionary. To obtain speech
segments and clusters that are consistent with text, other modali-
ties must be used for grounding. Supervised learning provides direct
grounding by specifying the classification categories for each input
unit. For example, in supervised ASR, each spoken utterance is paired
with a text transcription. Such pairings, if available in abundance,
enable end-to-end models to learn suitable embeddings and alignments
between the speech and text in one go. Indirect grounding, or distant
supervision, is the process of using a related but unaligned context of
other modality (e.g. text or images) to ground the discovered patterns
by finding correlations between the two cross-modal contexts. Using
text for grounding, this step ideally results in aligned speech and text
segments, which can be used directly as a rudimentary ASR system
by mapping each speech segment to its nearest neighbor in the text
domain. Additional steps could be followed to refine the model and
improve performance; for example, by incorporating a language model
and Viterbi decoding, or using the initial labels as a noisy dataset
for subsequent training in a pseudo-supervised manner. Using images
with corresponding audio captions has also been explored for ASR-
free image search, but also as an indirect grounding for spoken term
discovery (Harwath et al., 2016). For the purpose of ASR, such models
could potentially be used to eventually align the spoken words with
text, but parallel image and captions should be available for both text
and speech to make that possible.

1.1. The zero resource speech challenge

The Zero Resource Speech Challenge (ZRSC) was initiated in 2015
(Versteegh et al., 2015) with the goal of accelerating research in the
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field of unsupervised speech processing. The end goal of this com-
petition is to build a system that can achieve end-to-end learning
of an unknown language, taking as input nothing but raw speech.
The tasks handled by the challenge do not use any text for input or
output, with the aim of building speech-only models, such as speech
synthesis without text (Dunbar et al., 2019), and language modeling
without text (Dunbar et al., 2021). The overarching objective of the
challenge is only partially aligned with our formulation of unsupervised
ASR, where we do in fact require text transcriptions as an output, so
we do not restrict the use of un-aligned text for language modeling
or other tasks. However, the challenge does address some sub-tasks
that are useful for unsupervised ASR, including subword modeling,
spoken term discovery and word segmentation. We review relevant
models that were submitted to the challenge throughout the paper. In
particular, we focus on speaker-invariant sub-word modeling, were the
goal is to attain robust representations of speech sounds that ideally
encode the relevant linguistic features and discard irrelevant acoustic
features, such as speaker characteristics. In addition, we review works
on acoustic unit discovery, which aims to identify recurring patterns
in spoken utterances. This could entail partial or full segmentation of
utterances into smaller units. More details about the challenge and the
submissions for each task can be found in the challenge’s main review
papers (Versteegh et al., 2015; Dunbar et al., 2017, 2019, 2020, 2021).

1.2. Scope

For this review, we assimilated relevant research literature in the
following subareas: unsupervised sub-word and word modeling (Sec-
tion 3), unsupervised segmentation and spoken term discovery (Sec-
tion 4), and cross-modal mapping (Section 5). For the purpose of
presenting an insightful and coherent discussion, we did not limit the
time frame of the discussed literature; the main criterion of inclusion is
relevance and impact of the research outcomes on subsequent research
efforts. For brevity, we do not include details of models that have been
discussed and compared in existing reviews and provide citations for
further reading instead.

In unsupervised sub-word and word modeling, we include works on
sub-word modeling as defined in the Zero Resource Speech Challenge
(Section 3.1), and other major and recent works on unsupervised
acoustic word embeddings (Section 3.2). For spoken term discovery,
we discuss models that concretely aim to discover recurring patterns
that ideally correspond to words. This sub-task overlaps with word
segmentation as some segmentation models take the extra step of
clustering the segments to identify recurring units. However, we keep
the discussion of the two subtasks in separate sections since full seg-
mentation models have a somewhat different objective, which is to
identify word boundaries. After segmentation, we discuss approaches
for mapping the segments to textual units using distant supervision,
where an independent text corpus is used for cross-modal mapping.
Approaches in this category include several recent efforts that utilize
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adversarial networks for unsupervised mapping with moderate to high
success.

To get a complete picture and better understanding of these unsu-
pervised models in the context of modern ASR, we start by describ-
ing the components of standard and state-of-the-art ASR systems in
Section 2.

1.3. Terminology

In this paper, we address the problem of unsupervised Automatic
Speech Recognition (ASR), which in this context refers to the problem
of generating text transcriptions from raw speech input. By “supervi-
sion", we mean any form of manual labeling generated by humans,
such as pre-transcribed spoken utterances, phone and word boundaries,
and pronunciation dictionaries. Therefore, any model that does not
utilize such resources is unsupervised by our definition. We include
self-supervised models that use an auxiliary supervised objective from
the unlabeled input itself (such as auto-encoders) in our definition of
unsupervised ASR. We also include models that utilize non-parallel
resources of other modality, particularly text.

In speech science, a “phoneme" is the smallest unit that distin-
guishes a word from another in a given language. However, phonemes
do not necessarily correspond to coherent acoustic units, and they are
language-dependent (Moore and Skidmore, 2019). Acoustic units in
that range are referred to as “phones". Transcriptions of speech could
be either “phonetic", representing the sounds actually present in a
given utterance, or “phonemic", representing an abstract and consistent
form of each word in the language. Acoustic models typically model
phones and eventually classify them into phonemes. Instances of these
terms in the rest of the paper should be interpreted according to these
definitions.

2. Background

Automatic Speech Recognition (ASR) is the process of automatically
identifying patterns in a speech waveform. Patterns that could be
detected from speech include the speaker’s identity, language, emotion
and the textual transcription of the spoken utterance. The latter is what
is typically sought in ASR and is the focus of this paper.

The smallest recognizable unit of speech is the phoneme, which are
the sounds that distinguish words in a given language. An acoustic
realization of a phoneme in actual utterances is called a phone, with
a duration of 80 ms on average with high variance from 10 to 200 ms.
Phones are produced by changes in the shape of the speaker’s vocal
tract (VT), and spectral patterns of the speech signal indirectly encode
these VT shapes (O’Shaughnessy, 2008). Sequences of phones compose
words and utterances that carry meaning.

2.1. Traditional ASR

Typical ASR models are composed of three main components: an
acoustic model, a pronunciation dictionary and a language model.

The Acoustic Model (AM) calculates the probability of acoustic units
(e.g phones, sub-word units etc.), which can be modeled using Gaussian
Mixture Models (GMMs) (Zhang et al.,, 1994) and Hidden Markov
Models (HMMs) (Juang and Rabiner, 1991). Typically, GMMs are used
to compute the probability distribution of phones in a single state while
HMMs are used to find the transition probability from one state to
another. Each state corresponds to an acoustic event, such as a phone.
The GMM-HMM model is trained by the expectation maximization
(EM) technique, and Viterbi decoding is used to find the optimal state
sequence in HMMs. The pronunciation of phones in natural utterances
often varies depending on the acoustic context; therefore, context-
dependent triphone HMMs are used to model speech sounds, where
each phone is modeled with a left and right context. Recent ASR models
have replaced GMMs with deep neural networks (DNNs) (Hinton et al.,
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2012). These models are dubbed hybrid DNN-HNN models, and they
are still widely used as competitive ASR models.

The Language Model (LM) component computes the probability
of a sequence of words. LMs are used to improve the accuracy of
acoustic models by incorporating linguistic knowledge from large text
corpora. Syntactic and semantic rules are learned implicitly in LMs,
which are then used to re-score the acoustic model hypotheses. To align
the phonetic transcriptions that result from the AM with the raw text
used in language models, a pronunciation dictionary is used to map a
sequence of phonemes into words.

These components are trained independently and combined to build
a search graph using Finite state transducers (FSTs). The decoder then
generates lattices that are scored and ranked to generate the target
word sequences. ASR models are typically evaluated using word error
rate (WER), which is the number of substitutions, insertions, and dele-
tions, divided by the total number of words in the target transcription.
The phone error rate (PER) is another metric used to measure the
performance of the acoustic model. A block diagram of Traditional ASR
is shown in Fig. 2.

2.2. Modern ASR

Modern ASR systems are fully end-to-end; for example, Amodei
et al. (2015) describes an encoder—decoder architecture, where the
input audio is processed using a cascade of convolutional layers to
produce a compact vector. The decoder then takes the encoded vector
as input and generates a sequence of characters. A number of different
objective functions such as CTC (Graves et al., 2006), ASG (Collobert
et al., 2016), LF-MMI (Hadian et al., 2018), sequence-to-sequence (Chiu
et al., 2018), Transduction (Prabhavalkar et al., 2017) and Differ-
entiable decoding (Collobert et al., 2019) can be used to optimize
end-to-end ASR. Moreover, different architectures of neural networks
such as ResNet (He et al.,, 2016), TDS (Hannun et al., 2019) and
Transformer (Vaswani et al., 2017) have been explored. The output
labels of the end-to-end system can be characters or subword units such
as byte-pair encoding (BPE). An external LM can be incorporated to
improve the overall system performance.

The end-to-end ASR pipeline is shown in Fig. 3.

2.3. Challenges in ASR

One of the challenges in ASR, even if supervised, is the variabil-
ity that is characteristic of natural spoken utterances due to speaker
and environmental conditions. Utterances by different speakers have
acoustic differences that can be difficult to disentangle from the pho-
netic content. Even for an individual speaker, variability arises due
to speaking rate, intensity, affect, etc. Furthermore, ASR models are
often trained on clean speech data but they are often evaluated on real-
time noisy speech data. Sources of noise include background noises and
signal distortions through the input device.

Speaker-independent models could be trained using data that in-
cludes multiple speakers, but this often degrades the performance
of ASR and requires larger amounts of data for training to achieve
decent performance. The same applies to background noises and dif-
ferent environmental conditions. Instead, state-of-the-art ASR systems
are speaker-adaptive: they capture the variability of speakers using I-
Vectors (Saon et al., 2013) and X-Vectors (Snyder et al., 2018) which
are low-dimensional vectors that encode speaker-specific features. In
addition, various augmentation techniques can be utilized to supple-
ment the training data with more examples that reflect the expected
variability in test conditions.

For example, volume and speed perturbation are used to capture
the variability between utterances. Similarly, noise-augmentation is
used to supplement the training data with different environmental
conditions (Ko et al., 2015). All these strategies are combined to train
robust multi-condition ASR systems that can handle multiple sources of
variability.
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2.4. Feature extraction

The first step in any ASR pipeline is feature extraction, i.e. ex-
tracting meaningful information from speech and discarding redundant
information. The power spectrum of the speech signal somehow en-
codes the shape of the vocal tract, which determines the sound (phone)
generated, in addition to other speaker-specific characteristics. The
most commonly used representation of the speech power spectrum is
the Mel-frequency cepstral coefficients (MFCCs), which are widely used
as the very first step in speech processing to convert the audio signal
into discrete frames (see Fig. 4).

A typical application of MFCC feature extraction is carried out as
follows: the signal is first pre-emphasized to amplify the high frequency
components, then the signal is segmented into uniform overlapping
frames, typically 20 ms in duration. The frames are pre-processed by
a hamming window function before applying Fast Fourier Transform
(FFT) to compute the power spectrum. The output is passed through
~25 Filter banks to get the spectrogram of the speech signal, which
can be used directly as the input vector in ASR, as done in some end-
to-end neural models. However, these features are high-dimensional
and highly correlated. Alternatively, the Discrete Cosine Transform
(DCT) of the log filter bank energies is calculated, and the first 13
DCT coefficients are selected as compressed and decorrelated features.
Additional features include 13 delta-coefficients and 13 acceleration
coefficients derived from the selected DCT coefficients, which can be
combined to make 39 dimensional vectors. The whole process is shown
in Fig. 3. While these MFCC features efficiently encode useful phonetic
features, they also encode other acoustic features like speaker and
environmental conditions.

An alternative feature representation is perceptual linear predictive
(PLP) introduced in Hermansky (1990), which is found to be more
robust to speaker variations. Additional robustness could also be gained
using Gaussian posteriorgrams, which are obtained from the frame-wise
posterior probabilities of each phonetic class using Gaussian Mixture
Models (GMMs) trained on MFCC or PLP features (Hazen et al., 2009).
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3. Acoustic sub-word & word modeling

Most ASR models start by extracting salient features from the raw
waveform. The purpose of an initial feature extraction is to downplay
any linguistically-irrelevant patterns in the waveform that are likely
to distract from the learning task at hand, such as speaker char-
acteristics, channel distortions, environment noise, etc. As described
in Section 2.4 above, MFCCs are widely used features in most ASR
applications, and many of the approaches discussed here actually start
with MFCC features before performing additional feature modeling and
embedding steps. The downside of MFCCs is that they still contain
speaker-related features; using additional transformations and feature
embedding can lead to more robust representations, particularly in
unsupervised settings.

We divide this section into two parts: 3.1 unsupervised sub-word
modeling, which is mainly derived from the Zero Resource Speech
Challenge (ZRSC) and focuses on speaker-invariant frame-level feature
representations, and 3.2 acoustic word embeddings, where fixed-length
embeddings for longer segments are obtained. Note that acoustic word
embedding models could work either with MFCC features or any fea-
ture transformation described in the first subsection. Also, it is worth
noting that the acoustic word embedding models themselves could be
seen as a form of subword modeling, since they can potentially by
applied on any level of processing, including individual frames.

3.1. Speaker-invariant sub-word modeling

Subword modeling involves learning speech features that are lin-
guistically relevant (i.e. features that discriminate between different
phone categories) while discarding irrelevant acoustic features that do
not contain linguistic information. Ideally, the learned features should
be robust to speaker variations, and they may even generalize across
different languages (Dunbar et al., 2017). The standard metric used
for evaluation is the ABX discriminability between phonemic minimal
pairs (Schatz et al., 2013), which measures the ability of the model
to recognize instances of the same phoneme in different contexts and
different speakers. The ABX metric uses three tokens, A and B, which
differ by one phoneme (e.g. b-a-g vs. b-e-g), and a third token X, that
could belong either to the same category as A or B. Models are evalu-
ated by classifying X to either A or B based on some similarity metric
(such as dynamic time warping and frame-level cosine similarity), and
averaging the results over all ABX pairs in the test set. To evaluate
speaker-invariance, test sets are constructed such that A and B belong
to one speaker, while X belongs to a different speaker.

Clustering can be used as a simple form of feature representa-
tion (Coates and Ng, 2012), and frame-level clustering has been pro-
posed for speaker-invariant subword modeling using Gaussian poste-
riorgrams (Zhang and Glass, 2010). The most commonly used clus-
tering approach for this task is a Dirichlet Process Gaussian Mixture
Model (DPGMM), as done in Chen et al. (2015) and Heck et al.
(2016). K-means has also been used successfully for subword modeling
in Pellegrini et al. (2017).



H. Aldarmaki et al.

Due to the high sensitivity of the DPGMMs to acoustic variations,
a DPGMM produces too many classes leading to very high dimen-
sional posteriorgrams. To address this issue, Heck et al. (2016) used
Linear discriminant analysis (LDA) to transform speech vectors before
clustering. Heck et al. (2017) extended this idea to include addi-
tional feature transformations: Maximum likelihood linear transforms
(MLLT), Feature-space maximum likelihood linear regression(fMLLR)
and basis fMLLR transformations. Frame-level DPGMMs are learned
separately for each set of transformations, and the combination of
their posteriorgrams is used as the final feature representation for
each frame, which led to better performance compared to using raw
features or individual transformations. The performance of the models
proposed by Heck et al. (2017) surpassed all other models submitted
in ZRSC’17 in ABX evaluations. It is worth noting that they have used
PLP features (Hermansky, 1990) instead of MFCCs as input, which can
be partially responsible for the superior performance in cross-speaker
ABX evaluation.

Pellegrini et al. (2017) uses K-means clustering on MFCC features
whitened using Zero-Component Analysis (ZCA). The feature represen-
tations are calculated as the distances between data points and the
cluster centroids. While this model outperforms the baseline of using
MFCC features alone, it considerably underperforms compared with
DPGMM-based models.

An alternative use of clustering for sub-word modeling is to use the
automatically assigned cluster labels to form an auxiliary supervised
training target for training neural network models, as done in Pellegrini
et al. (2017) and other submissions in ZRSC’17, such as Yuan et al.
(2017, 2016), and Chen et al. (2017). However, using neural networks
in this manner did not lead to better performance compared to simply
using the features derived directly from the clustering methods. Earlier
models described in Badino et al. (2014, 2015) use variants of deep
Auto-Encoders (AEs) for sub-word modeling, and show that AEs lead to
more discriminative features compared to GMMs. They also experiment
with intermediate binarized features that are used for both encoding
and clustering while minimizing the reconstruction loss. However, stan-
dard AEs generally perform better in ABX evaluations (Badino et al.,
2015).

More recent models that were evaluated within the context of
speech synthesis without text (Dunbar et al., 2019) resulted in much
better performance in ABX evaluations. The best-performing models
in this task use Contrastive Predictive Coding (CPC), which helps
representations to capture phonetic contrasts (Riviere et al., 2020; Kahn
et al., 2020). A good example of a model that follows this framework
is described in van Niekerk et al. (2020).

In addition to using CPC for feature representation, van Niekerk
et al. (2020) explores the use of vector quantized neural networks in
conjunction with autoencoders. Vector quantization works by mapping
the continuous feature vectors to their nearest neighbor in a codebook
containing a finite number of distinct codes (or features), thereby
effectively discretizing the features. In particular, they use vector quan-
tized variational autoencoder(VQ-VAE) for acoustic modeling. A vector
quantization layer is inserted between the encoder and decoder to
discretize the representations learned by the encoder. In order to verify
that VQ is robust to speaker variations, the representations are evalu-
ated before and after quantization. This is verified by a clear reduction
in speaker classification accuracy post vector quantization.

Giindogdu et al. (2020) also applies vector quantization to recurrent
sparse autoencoders, which are fine-tuned using the respective speech
segments obtained using unsupervised term discovery (as described
in Yusuf et al. (2019)). This system performs almost as well as the
topline in ZRSC’20 in ABX tests for training languages, and surpasses
the topline for surprise languages. Similarly, Tobing et al. (2020)
applies vector quantization to cyclic VAEs (CycleVAE) to improve per-
formance by detangling speaker characteristics from the latent space.
This is achieved by marginalizing possible speaker conversion pairs.
While CycleVAE performs worse than the baseline in ZRSC’20, vector
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quantized CycleVAE performs almost as well as the topline, indicating
the positive influence of vector quantization on learning better subword
representations.

One of the drawbacks of using a VQ-VAE model is that this model
encoded speech in much smaller segments (higher bitrate) than hu-
man transcriptions of phonemes. To address this issue, Kamper and
van Niekerk (2020) proposes to match blocks of contiguous features
vectors to a single codebook entry (rather than matching each feature
to a code). Two methods are experimented with for segmentation of
these feature blocks: a greedy approach and a dynamic programming
approach. The greedy approach merges a predefined number of feature
vectors, while the dynamic programming approach optimizes the sum
of squared distances between feature vectors and associated codes
within each segment. This essentially amounts to phonetic segmenta-
tion, subword modeling, and acoustic unit discovery. Additional models
that utilize quantization in the context of speech synthesis without text
are described in Dunbar et al. (2020), where models are evaluated for
subword modeling and term discovery, in addition to speech synthesis
quality.

3.2. Acoustic word embeddings

Variability in speech segment length makes it difficult to directly
compare frame-wise representations of acoustic units like phones or
words. Dynamic Time Warping (DTW) is an early technique used to
compare variable-length audio segments using dynamic programming
to find an optimal frame-wise alignment between them (Rabiner et al.,
1978; De Wachter et al., 2007; Levin et al., 2013). DTW is based on
frame-wise comparison, typically using the Euclidean distance between
each pair of frames, so it is used mostly to compare segments repre-
senting the same acoustic unit; for example, the same word spoken
at different rates. Furthermore, since MFCCs include a speaker and
environmental characteristics in addition to phonetic features, MFCC-
based DTW cannot effectively be used to compare segments with
non-matching conditions. Using posterior features can lead to more
robust performance (Aradilla et al., 2006; Hazen et al., 2009).

Computationally efficient models attempt to embed the segments
into fixed-dimensional vectors that can be directly compared using
Euclidean distance or cosine similarity, which enables scalable spoken
term discovery (Park and Glass, 2008a; Jansen et al., 2010; Jansen and
Van Durme, 2011) and query-by-example search (Jansen and Durme,
2012; Zhang and Glass, 2009; Metze et al., 2013). Early embedding
approaches include simple down-sampling (Zue et al., 1989; Glass,
2003; Ostendorf et al., 1995; Abdel-Hamid et al., 2013), acoustic
model-derived features (Zweig et al., 2011; Layton and Gales, 2007)
and convolutional deep neural networks (Maas et al., 2012).

Down-sampling is a rather simple technique to embed segments
directly by extracting a specified number of frames from each segment.
For instance, uniform down-sampling is performed by sampling frames
at T/k intervals, where T is the total number of frames in the segment
and k is the number of samples we wish to extract. The resultant em-
bedding size is then k times the dimension of the MFCC feature vectors.
Non-uniform down-sampling can also be achieved using a k-state HMM,
where each state is modeled as a single spherical Gaussian (Levin et al.,
2013). Variants of uniform and non-uniform downsampling strategies
are explored in Holzenberger et al. (2018).

Alternatively, neural networks can be used to compress variable-
sized input segments into fixed-dimensional embeddings, as is typically
done for text-based embeddings such as word2vec (Mikolov et al.,
2013), which is used to obtain continuous vector representations of
words such that semantically or syntactically related words are similar
to each other in the vector space. These embeddings can be trained
using the continuous bag of words (CBOW) or skipgram objectives. In
CBOW, the model attempts to predict a target word given a window
of surrounding context words, while in skipgram, the model directly



H. Aldarmaki et al.

minimizes the distance between the embedding of a word and selected
context words, with negative samples to regularize the training.

For spoken words, the embedding network must somehow handle
the variable-length input of acoustic frames. The most common archi-
tecture for this type of acoustic embedding is a neural encoder-decoder
self-supervised model.

For example, audio word2vec (Chung et al., 2016) and speech2vec
(Chung and Glass, 2018) are both directly inspired by the word2vec
text embedding framework to obtain spoken word embeddings, but
they rely on recurrent encoders and decoders to handle the variable-
length nature of spoken words. Audio word2vec’s training objective
is not parallel to word2vec’s CBOW or skipgram objectives. Each seg-
ment is encoded and decoded independently of other segments; as a
result, the obtained embeddings encode phonetic rather than semantic
features, which is useful in cases where acoustic similarity is more de-
sirable than semantic similarity. On the other hand, speech2vec (Chung
and Glass, 2018) employs a training methodology borrowed directly
from the word2vec framework using the skipgram objective. Since
each occurrence of a spoken term is rather unique, static speech em-
beddings can be obtained by averaging the embeddings of all oc-
currences of a spoken word. Note that unlike text-based skipgram
where negative samples are necessary to avoid a degenerative solution,
speech2vec does not require such regularization since the decoder has
to reconstruct the original segment frame-by-frame, thereby ensuring
that different words have different embeddings. Since they emphasize
similarity to context words, speech2vec embeddings tend to encode
semantic features rather than phonetic features as most other speech
embedding techniques.

Similar RNN-based auto-encoders for acoustic word embeddings are
described in Audhkhasi et al. (2017) and Holzenberger et al. (2018),
the latter shows that RNN-based models outperform down-sampling in
ABX evaluations.

A more robust form of self-supervised learning of acoustic embed-
dings is the Correspondence Auto-Encoder (CAE) described in Kamper
(2019), where the decoder is trained to reconstruct another occurrence
of the spoken word instead of directly reconstructing the input as in
audio word2vec, or surrounding context as in speech2vec. Pairs of
spoken words are first collected using an unsupervised term discovery
system, and the CAE model is then used to reconstruct one of the words
given the other as input. The model was evaluated on word discrimina-
tion tasks designed in Carlin et al. (2011), and it is compared against
downsampling, auto-encoders, and variational auto-encoders. CAE em-
beddings outperformed all others in this evaluation task. However,
a correspondence variational auto-encoder is later introduced (Peng
et al., 2020), where it outperforms the original EncDec-CAE model in
word discrimination tasks.

Acoustic word embeddings could be improved further using pre-
trained frame-wise features instead of directly using MFCC vectors as
input to the embedding network, as shown in van Staden and Kamper
(2021). They show that using frame-wise features that are trained using
the following approaches lead to better acoustic word embeddings than
using MFCC features directly: contrastive predictive coding (CPC) (van
den Oord et al., 2018), Autoregressive predictive coding (APC) (Chung
et al.,, 2019), and a frame-level correspondence autoencoder (CAE).
Similar to Kamper (2019), the latter is trained by first extracting
pairs using unsupervised spoken term discovery, then DTW is used to
find a frame-level alignment between these words. The model is then
trained at the frame level similar to a regular auto-encoder objective.
These three frame-level feature representations (CPC, APC, or CAE)
were used as input to an acoustic word embedding model, namely the
correspondence auto-encoder model described above, and they all led
to significantly better word discrimination accuracy when combined
with downsampling and correspondence auto-encoders compared to
using MFCC features. The improvement is particularly evident for
the low-resource language Xintonga. Results on speaker classification
accuracy indicate that such representations downplay speaker-specific
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features in favor of more linguistically-relevant features. Not that all
models described above could be applied to true word pairs with
oracle boundaries, or pairs extracted in an unsupervised fashion. The
audio word2vec and speech2vec models described above have been
evaluated using oracle word boundaries, but they could theoretically be
applied after unsupervised term discovery (Section 4.1) or full coverage
segmentation (Section 4), where phone/word boundaries are detected
automatically in an unsupervised manner.

4. Unsupervised segmentation & acoustic unit discovery

Segmentation is the process of breaking down a continuous stream
into discrete units, such as phones, syllables, words, or other meaning-
ful sub-word units. These segments could then be processed, clustered,
and used to efficiently access the information content of the utterance.

Earlier works on lexical perception attempted to segment phone-
mically transcribed inputs of child-directed speech (MacWhinney and
Snow, 1990). This data set was further processed using a phonemic
dictionary so that each occurrence of a word type has the same phone-
mic transcription (Brent, 1999). This simplified formulation is not
representative of the actual challenges in raw speech segmentation
where phones are not known in advance or even perfectly segmented.
However, the approaches and results described in these earlier works
demonstrate the effectiveness of different linguistic assumptions (Sec-
tion 4.2). Moreover, these approaches can be used in a bottom-up
fashion after phonetic segmentation and clustering to identify possible
locations of word boundaries (as explored, for example, in Jansen et al.
(2013)).

Identifying word boundaries from the raw speech is considerably
more challenging. Phonetic (Section 4.3) or syllabic (Section 4.4) seg-
mentation could be used as the first steps to constrain the locations
of word boundaries. Phones and syllables have relatively predictable
temporal structures that can be identified in the signal. However,
clustering these phonetic or syllabic segments into types consistent with
their true identities is more challenging and is often addressed within
a distant supervision framework (see Section 5).

For unsupervised word segmentation of raw speech (Section 4.5),
several self-supervised models have been proposed. Most of these mod-
els are based on minimizing reconstruction loss in an auto-encoder
framework. Some of these models rely on the assumption of within-
word predictability and ignore wider context, while other models in-
corporate hierarchical structures more explicitly.

Before describing full segmentation models, it is worth noting that
earlier models focused on identifying occurrences of individual words, a
task often dubbed “spoken term discovery”. Compared to full-coverage
segmentation, these methods could potentially be more accurate in
identifying frequent words and can be useful as a first step for full-
coverage segmentation or in query-by-example search (Jansen and
Durme, 2012; Zhang and Glass, 2009; Metze et al., 2013). Full-coverage
word segmentation (Section 4.5), on the other hand, results in complete
segmentation of the input corpus without necessarily identifying re-
curring terms. Some approaches incorporate clustering and embedding
with the full segmentation process to achieve rough word discov-
ery in addition to segmentation. We will start by discussing models
that directly address spoken term discovery in Section 4.1, followed
by full segmentation models in the remaining sections. For the lat-
ter, we will start by reviewing models of word segmentation from
phonemic transcriptions, followed by segmentation models from raw
speech. Segmentation performance is reported using token F1l-score
(TF) and boundary F1-score (BF). The former counts only the segments
where both boundaries are correctly detected and no spurious internal
boundaries are added; the latter measures the detection of individual
boundaries. In some cases, the R-value is reported as an alternative
to the F1 measure (Résdnen et al., 2009), which is more robust in
cases of over-segmentation (high recall and low precision). In raw
speech segmentation, a tolerance of 20 ms is used in all measures;
i.e. a boundary detected within 20 ms of a true boundary is considered
correct.
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4.1. Spoken term discovery

Several spoken term discovery models have been discussed and
compared in three iterations of the Zero Resource Speech challenge
(Versteegh et al., 2015; Dunbar et al., 2017, 2020). In this section, we
review a selection of models that showcase the major directions used
for this task; additional models and details can be found in the ZRSC
papers cited above.

Segmental dynamic time warping (S-DTW) (Park and Glass, 2008b)
is used to find acoustically similar segments in audio utterances. The
original DTW algorithm is best suited for aligning isolated word seg-
ments (see Section 3.2. S-DTW is applied at the utterance level to
find potential recurring patterns within these utterances. The DTW
algorithm is modified by incorporating some constraints that limit
the temporal skew of the alignment and offset starting points for the
search, which results in multiple possible alignments for each pair of
utterances. These constraints naturally divide the input into regions
where the traditional DTW algorithm can be used to find the optimal
alignment. The next step is to discard all alignments with high distor-
tion and only keep the best matches. This is achieved by identifying
segments with length at least L that minimize the average distortion,”
which can be calculated in O(N log(L)) time (Lin et al., 2002), where
N is the length of the fragment, and L is the minimum length of
resulting subsequence. The minimum length L can be tuned to return
linguistically meaningful units like words and phrases.® The discovered
segments are then clustered using a graph clustering algorithm to
identify unique word types. The nodes in the graph represent time
locations in the audio stream that have frequent overlap with other
points in the stream. The edges represent the similarity based on the
average distortion score for the path common between the two nodes.
An efficient clustering algorithm is then used to identify groups of
similar nodes (Newman, 2004). Clusters generated from 1-hr speech
by the same speaker have high purity and good coverage of terms
recurring in the sound stream. However, the approach does not provide
full coverage as it relies on repeated patterns by the same speaker;
the segments have to be acoustically similar. The approach relies on
consistent recurring occurrence of speech patterns given similar speaker
and environmental conditions. A probabilistic approach to DTW-based
spoken term discovery is described in Risdnen and Blandén (2020).

In Zhang and Glass (2010), the S-DTW algorithm is extended by
using Gaussian posteriogram representation of the speech signal instead
of MFCCs to generalize the approach for multiple-speakers. The ap-
proach is based on training an unsupervised GMM on speech segments
from multiple speakers, and then using the trained GMM to generate
the posterior vector for each input frame. These vectors are used for
the next two steps of S-DTW and clustering. The distance metric used in
this case is the negative joint log-likelihood, which is equivalent to the
probability of the two vectors being drawn from the same underlying
distribution. Experiments on the TIMIT dataset, which includes a total
of 580 speakers, indicate that Gaussian Posteriograms can identify a
much larger number of word clusters spanning multiple speakers with
high cluster purity based on word identity. However, the same words
were sometimes broken into different clusters.

A model that integrates hierarchical levels of segmentation is the
one described in Lee et al. (2015). It combines the phonetic segmenta-
tion of Lee and Glass (2012) with the adaptor grammar of Johnson and
Goldwater (2009) for word discovery. The adaptor grammar incorpo-
rates words, subwords, and phones, but it does not include collocations.
They also model phone variability using a noisy-channel model to
map the variable segments into unique types, which circumvents the
need for explicit clustering. The noisy-channel, which attempts to

2 The distortion values are calculated using the Euclidean distances between
the aligned acoustic vectors.
3 In Lin et al. (2002), L is set to 500 ms.
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standardize the phonetic segments, is implemented as a PCFG that
includes three edit operations: substitute, split, and delete. These three
components (phonetic segmentation, variability modeling, and lexical
segmentation) are modeled jointly as a generative process. Compared to
other approaches, this joint model results in a higher word discovery
rate when evaluated in a subset of six lectures from the MIT lecture
corpus (Glass et al., 2005). The results are shown in Table 3, which
is the average number of hits (discovered words) from a list of 20
frequent words. In addition, this model can be used for full-coverage
phoneme and word segmentation. In this dataset, the model achieved
76 phoneme segmentation F score, and 18.6 word segmentation F score,
averaged over the six lectures (see Table 1).

4.2. Word segmentation from phonetic transcriptions

Statistical cues, such as the internal consistency of words, could be
utilized for word segmentation (Saffran et al., 1996). Assuming that
syllables and phonemes are more predictable within words than across
word boundaries, transitional probabilities or mutual information were
used in earlier models for word segmentation given phonemically
transcribed speech (Cairns et al., 1997). According to this view, given
a unit (phone, syllable) naturally occurring in a spoken utterance, the
likelihood of the next unit should be higher if both units form a word
than if they cross word boundaries. The phoneme transitional probabil-
ities, calculated from data, can thus be used to insert word boundaries
at points of low probability. These models ignore word transition
probabilities, assuming that words in an utterance are independent.

The above assumptions have been implemented using standard
n-gram modeling (Cairns et al., 1997) and self-supervised neural net-
works (Cairns et al., 1997; Elman, 1990). Using a self-supervised Simple
Recurrent Network (SRN) with the objective of predicting the next
phoneme, peaks in prediction errors are used as indicators of word
boundaries. This model tends to over-segment the input, leading to
units that are more like syllables than words (Cairns et al., 1997).

Other segmentation models based on the assumption of within-word
predictability employ probabilistic word grammars, text compression
schemes, minimum description-length,* and generative probabilistic
models of unigram word distribution (Brent, 1999). Brent’s Model-
Based Dynamic Programming (MBDP) model is specified in a way that
assigns a higher prior probability to segmentations with fewer and
shorter lexical items by explicitly modeling relative frequencies.

The models described above ignore all syntactic relationships be-
tween words in an utterance. Yet syntax clearly plays a role in lexical
perception (Rdsdnen, 2012). While direct incorporation of syntactic
structure in word segmentation has not been well studied, simpler dis-
tributional cues, such as word dependencies, can be used to indirectly
incorporate syntax in the segmentation process. Goldwater et al. (2006)
shows that incorporating context in the form of bigram dependencies
leads to improved word segmentation performance. Unigram models
tend to under-segment utterances by mistaking collocations® for words.
Models that explicitly incorporate collocations can largely rectify this
problem.

A more detailed discussion can be found in Goldwater et al. (2009),
which evaluates non-parametric Bayesian models that incorporate dif-
ferent independence assumptions. Assuming words are independent of
each other, models tend to under-segment the utterance resulting in
multi-word segments. Goldwater et al. (2009) argues that this weak-
ness is general for all models that assume unigram word distribution.
Introducing dependencies between words increases the segmentation
rate and accuracy. As in Brent (1999), Goldwater et al. (2009) uses
a probabilistic generative process to compute the prior probability of
each possible segmentation. The probabilistic model is designed in a

4 See Brent (1999) for a complete review of these methods.
5 Words that frequently occur together.
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Spoken term discovery results as hits over 20, or number of discovered words from a list of 20 words with top tfidf scores (Park and Glass,
2008b). Results are reproduced from (Lee et al., 2015), but we report the average over the six lectures.

Model Description Hit \ 20
Park and Glass (2008b) Segmental DTW with MFCC features 14.8
(Zhang and Glass, 2010) Segmental DTW with Gaussian Posteriograms 17.2
Lee et al. (2015) A Integrated acoustic model, noisy-channel & adaptor grammar 17.8
Lee et al. (2015) B Lee et al. (2015) A, without acoustic model 16.3
Lee et al. (2015) C Lee et al. (2015) A, without noisy channel 11.5

way that generates novel lexical items with high probability early in the
process, and this probability decreases as more tokens are generated.
This leads to fewer lexical items overall. Moreover, the probability of
each novel word is the product of the probabilities of its constituent
phonemes, which leads to smaller lexical items. Finally, the probability
of generating an existing word is proportional to the number of times
it has already occurred in the current segmentation, which leads to a
power-law distribution over words similar to the distribution observed
in natural languages (Zipf, 1932) The bigram model is hierarchical
(namely, a hierarchical Dirichlet process (Teh et al., 2006)), and it
achieves 72.3 token F-score, and 85.2 boundary F-score. The improve-
ments are mainly due to increased recall, which is a result of breaking
down collocations to their constituent word types. While this leads to
much better segmentation, the bigram model does introduce another
kind of error: over-segmentation of frequent word suffixes.

Optimal word segmentation is likely to be achieved using inter-
active models that incorporate multiple levels of processing: words,
collocations and sub-word structures like syllables or morphemes. One
such interactive approach is the adaptor grammar described in Johnson
(2008).° The model learns hierarchical structures simultaneously by
incorporating syllabic structure and collocations in addition to words
in the grammar. Compared to word-only models, The highest improve-
ment in word token F-score is achieved by specifying collocations
in the grammar (0.76). A slight improvement is achieved by also
incorporating syllabic structure (0.78), which is the highest word token
F-score among all models discussed here. Modeling morphology in the
form of stems and suffixes, however, did not improve performance.

More recently, deep neural networks have been proposed for the
task of segmentation to model human memory and lexical perception.
An unsupervised LSTM autoencoder with limited memory is explored
in Elsner and Shain (2017), optimized with the objective of minimizing
utterance reconstruction errors. The boundary detection is optimized by
sampling to estimate the gradient of the reconstruction loss: boundaries
that appear in samples with low reconstruction loss are assigned a
higher likelihood. Cross-entropy is used to estimate the probability
of the data given a boundary. Limiting the memory may encourage
the model to rely on phonological predictability within words and
syntactic or semantic predictability between words. The intuition is
that actual words should be easier to compress and reconstruct in
the autoencoder model compared to random sequences of phonemes.
Experiments show that networks comprised of a smaller number of
hidden units outperform those with a larger number of hidden units.

While word segmentation is made easier by the unrealistic phone-
mic transcription in this dataset, natural speech actually contains other
signals that could be exploited to aid segmentation. Fleck (2008) is
an example of a model that uses pause information to identify likely
starts and ends of words. It corresponds to a unigram language model:
it assumes words are independent given a word boundary. The pauses
that occur naturally in spoken corpora are used to estimate the prob-
ability of a boundary given the left and right context around it. These
probabilities are estimated using simple ngram statistics with backoff.”

® An adaptor grammar is a probabilistic context-free grammar (PCFG)
where some of the non-terminals and their probabilities are learned from data.

7 The model is bootstrapped using a generous estimation of these probabil-
ities: if a pause occurs at least once before or after a context, the probability
is set to a high value close to 1.
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The model performs similar to Goldwater et al. (2009) for English,
but worse for Spanish. Results indicate that the success of the model
depends on the size of the corpus and the presence of pauses. It also
generalizes well to Arabic,® a morphologically complex language with
longer words.

Raw speech contains variations in pronunciation, which are nor-
malized in the dataset above using a phonemic dictionary. In Elsner
et al. (2012), they construct an approximate phonetic transcription
by converting each word randomly to one of the possible surface
forms in the Buckeye corpus (Pitt et al., 2005). Results on this dataset
for Goldwater et al. (2009) is 80.3 BF, and 62.4 TF. With noisy data, the
model tends to over-segment. The accuracy of the model is improved
by modeling phonetic variability explicitly using a noisy-channel model
implemented as a finite-state transducer (Elsner et al., 2013). The FST
is optimized using the EM algorithm and initialized using faithfulness
features to encourage plausible changes. The results of the Bigram
model with the FST transducer optimized jointly is 81.5 BF, and 66.9
TF.

In Jansen et al. (2013), generative word segmentation models simi-
lar to the works described above (Johnson, 2008) are evaluated on both
phonemic transcriptions and automatically generated transcriptions
using supervised and unsupervised models. Results confirm the conclu-
sions reached by earlier models, namely that modeling syllables, words,
and collocations together indeed improves the segmentation perfor-
mance, even in the presence of noise as a result of using unsupervised
acoustic models.

4.3. Phonetic segmentation of raw speech

Phones are distinct sounds produced by modifying the shape of
the vocal tract, which is indirectly encoded in the spectral patterns
of the speech signal. The speech signal is continuous, and phones
vary according to the context of preceding and following phones (co-
articulation), so identifying phonetic boundaries and clustering the
segments into sets that correspond to actual phone categories is not
an easy feat. However, spectral changes in the speech signal could be
used to detect phonetic boundaries with high accuracy.

Assuming that speech frames are more similar and predictable
within than across phone boundaries, statistical models could be used
to identify points of low predictability. In Michel et al. (2017), a
simple pseudo-Markov model is proposed to estimate frame transition
probabilities. An alternative LSTM model is also proposed, where the
objective is to predict the next frame given past input. A peak predic-
tion algorithm is then used to identify local maxima in prediction errors
as potential phone boundaries.

In Lee and Glass (2012), a generative Bayesian model is proposed to
jointly segment speech into sub-word units that correspond to phones,
cluster the segments into hypothesized phoneme types, and learn an
HMM for each cluster. This generative model assumes phones are
generated independently, and each phone is modeled as a three-state
HMM. Each state’s emission probability is modeled by a GMM with 8
components. This formulation roughly corresponds to standard acoustic
models in traditional ASR systems, but employs an iterative inference
process using Gibbs sampling to find the model that best represents the
observed data.
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Table 2
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A summary of word segmentation performance using token F-score (TF) and boundary F-score (BF) on the CHILDES dataset. Top, phonemically
transcribed data (Brent, 1999); bottom, phonetically transcribed variant (Elsner et al., 2012) where a word could be transcribed differently in

different contexts.

Model Description TF BF
Brent (1999) Probabilistic model with Unigram word distribution 68 -
Goldwater et al. (2009) Non-parametric Bayesian model with Unigram assumption 54 74
Goldwater et al. (2009) Non-parametric Bayesian model with Bigram assumption 72 85
Johnson (2008) Adaptor grammar that models words only 55 -
Johnson (2008) Adaptor grammar with words and Collocations 76 -
Johnson (2008) Adaptor grammar with words, collocations & syllables 78 -
Fleck (2008) Unigram word distribution, incorporates pause information 71 83
Elsner and Shain (2017) Utterance autoencoder model with limited memory 72 83
Phonetically Transcribed Data (Elsner et al., 2012)

Goldwater et al. (2009) Bigram probabilistic model 62 80
Elsner et al. (2013) Bigram probabilistic model with FST noisy channel 67 82

Table 3

Phonetic segmentation boundary F1-scores and R-values on TIMIT and Buckeye datasets. The bottom row is a state-of-the-art supervised phoneme
segmentation model for comparison. Table is reproduced from Kreuk et al. (2020a) and Baevski et al. (2021) . t Results from original paper

and on TIMIT training rather than test set.

Model Description TIMIT Buckeye

F1 R-val F1 R-val
Lee and Glass (2012)1 Bayesian acoustic model 76.3 76.3 - -
Michel et al. (2017) Peaks in frame prediction errors 78.2 80.1 67.8 72.1
Wang et al. (2017) Maxima in gate activation signals - 83.2 71.0 74.8
Kreuk et al. (2020a) contrastive learning 83.7 86.0 76.3 79.7
Baevski et al. (2021) k-means 53.9 56.1 - -
Baevski et al. (2021) k-means + Viterbi 62.9 66.5 - -
Kreuk et al. (2020b) SOTA supervised 92.2 92.8 87.2 88.8

Using gated networks trained as frame autoencoders, Gate Activa-
tion Signals (GAS) could also be used for phonetic segmentation. Wang
et al. (2017) demonstrates that the temporal structure in these signals,
particularly the update gate in Gated Recurrent Networks (GRNN),
correlate with phone boundaries. The local maxima in these signals are
used as potential boundaries for segmentation.

Contrastive learning is a self-supervised learning framework where
the objective is to group adjacent regions of the input together and
to push disjoint regions away from each other (Jaiswal et al., 2021).
In Kreuk et al. (2020a), self-supervised contrastive learning is used
to learn discriminative encodings of speech frames such that adjacent
frames have higher cosine similarity than randomly sampled distractor
frames.’ The learned encoding function is then used to detect phone
boundaries at points where adjacent frames exceed a threshold dis-
similarity value. A validation set was used to set the peak detection
threshold and other hyperparameters using 10% of each corpus. This
model achieves state-of-the-art segmentation R-value (see Table 2).
The segmentation results can be generalized to out-of-domain data
and other languages, especially if the training data is augmented with
additional unlabeled speech.

The model described in Shain and Elsner (2020) encodes and de-
codes the speech signal in a hierarchical manner, where each layer
encodes the input at different time scales, using a hierarchical multi-
scale LSTM (HM-LSTM) (Chung et al., 2017). This model is an extension
of the working memory model described in Section 4.2, but it includes
a hierarchy of segmentation in different layers of the encoder, and the
objective incorporates both memory (i.e. reconstruction) and prediction
components. In experiments, however, the model did not work beyond
phonetic segmentation in the first layer.!° Results also indicate that
both memory and prediction pressures lead to balanced precision and

8 77 BF and 57 TF compared with Goldwater et al. (2009): 64 BF and 33
TF.

9 The function is implemented as a convolutional neural network.

10 In ZRC’15 dataset, the first layer achieves phone boundary F-score of 49.3
for English, and 53.8 for Xitsonga, much lower than the scores in Table 2.
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recall ratios, where memory pressure slows down the segmentation
rate and prediction pressures increase it, resulting in a more balanced
precision and recall trade-off.

The state-of-the-art unsupervised speech recognition model recently
described in Baevski et al. (2021) employs a rather simple phonetic
segmentation approach based on frame-wise embedding and clustering.
All frame embeddings are first clustered using k-means, and then phone
boundaries are initialized at points where the cluster ID changes. This
simple approach results in boundary F-score of 54 on TIMIT. The
segmentation is improved using Viterbi decoding after classifying the
segments using the proposed unsupervised model (described in more
details in Section 5).

4.4. Syllabic segmentation from raw speech

Phones are linguistically well-defined and consistently transcribed
in many datasets, but the syllable is often considered a better candidate
for a basic unit in human speech perception (Port, 2007; Rasdnen,
2012). One advantage of using raw speech is the ability to identify
the rhythmic patterns of syllables which is absent in phonetically
transcribed inputs. Prosodic cues, like stress patterns in English speech,
can be correlated with word boundaries. It has been estimated that
about 90% of words in spoken English begin with strong syllables (Cut-
ler and Carter, 1987), and experiments suggest that infants younger
than 10 months are more likely to segment words at the onset of
strong syllables (Jusczyk et al., 1999). Although not all languages have
consistent stress patterns (Hyman, 1977), the onset of syllables could
be used to constrain the locations of word boundaries in combination
with other statistical methods.

While syllables are not clearly defined and may overlap in time
(Villing et al., 2004; Goslin et al., 1999), their rhythmic structure can be
identified using the acoustic features of speech (Résénen et al., 2018).
In Résédnen et al. (2015), unsupervised segmentation of syllables is used
as the first step in word segmentation. A syllable is defined here as a
segment of speech characterized by rhythmic increase or decrease of
the signal’s amplitude within 2-10 Hz. The waveform envelope (how
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the amplitude changes over time) is the main feature used for syllable
boundary detection in several earlier models.'! (Mermelstein, 1975;
Villing et al., 2004; Wu et al., 1997)

In Rédsdnen et al. (2015), a damped harmonic oscillator driven by
the speech envelope is proposed as an alternative syllabic segmentation
algorithm. This algorithm is inspired by models of human neuronal
oscillations assumed to be responsible for speech perception (Giraud
and Poeppel, 2012). Unlike previous models that directly use the peaks
and troughs of the amplitude envelope to identify syllables, this model
uses the speech envelope to feed the oscillator. The oscillator’s minima
are then marked as potential syllable boundaries.

After identifying syllabic segments, each segment is compressed
into a fixed-dimensional vector by averaging their MFCC vectors.'?
After segmentation and compression, the standard k-means algorithm
is used to cluster the syllables (alternative non-parametric models for
syllable clustering are explored in Seshadri et al. (2017)). Finally,
recurring syllable sequences (n-grams of different orders) are identified
as words. Since the syllable embeddings are based on MFCC features,
the model is speaker-dependent, and the processing is done separately
for each speaker. Compared to other syllable segmentation models,
using the oscillator-based algorithm results in better word segmentation
performance in the Buckeye corpus as shown in Table 5.

4.5. Word segmentation from raw speech

The models described above for phone and syllable segmentation
could be used as the first steps to achieving word segmentation using
techniques similar to those described in Section 4.2. One example
of that is the syllabic segmentation model described in the previous
section, which is used with n-gram modeling to identify recurring
syllables as words (SylSeg in Table 5). More sophisticated segmentation
models that incorporate collations and other features could potentially
be used for the same purpose, but this territory has not been fully
explored in the literature.

The challenge in word segmentation from raw speech is that words
do not have an acoustic signature that could be used to estimate word
boundaries. While syllables have identifiable rhythmic patterns and
phones exhibit some internal coherence, words are rather arbitrary.
Most word segmentation models incorporate some prior assumptions
about words, such as minimum length, maximum number of sylla-
bles, or number of word types. Some models are based on the idea
of reconstruction loss via autoencoders, such as the segmental audio
word2vec (Wang et al., 2018) and working memory model (Elsner
and Shain, 2017), and others are based on optimizing word clustering
while segmenting the input (Kamper et al., 2017a,b). Except for El-
sner and Shain (2017), these models do not incorporate word bigram
dependencies.

Reconstruction-based models (i.e. autoencoders) rely on the as-
sumption that sequences of phones or acoustic features that constitute
words should be easier to reconstruct than other arbitrary sequences.
The segmental audio word2vec model (Wang et al., 2018) is an RNN
sequence-to-sequence autoencoder trained jointly with a binary seg-
mentation gate, which is optimized using reinforcement learning. The
encoder and decoder are reset at segment boundaries, so each segment
is reconstructed independently, and the rewards are calculated by
penalizing reconstruction errors and the number of segments to avoid
over-segmentation. The training objective of the autoencoder itself is
equivalent to the audio word2vec model described in Section 3.2,
where each word is treated independently by resetting the encoder
and decoder at segment boundaries. The segmentation gate and au-
toencoder are trained in iterations, fixing one to update the other. This

11 See Villing et al. (2004) for a review and comparison of these methods.

12 In Risénen et al. (2015), they divide each segment into 5 uniform parts
and average the MFCC vectors in those sub-segments. The average vectors are
then concatenated to get a fixed-length representation of each syllable.
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model does not incorporate any constraints or assumptions about words
other than the penalty on the number of segments, which could be
tuned to achieve phonemic rather than word segmentation. On TIMIT,
this model achieves a word boundary F-measure of 43, with higher
recall than precision (52 and 37, respectively).

The working memory model (Elsner and Shain, 2017) described
in Section 4.2 can also be used for raw speech segmentation. This
is an utterance auto-encoder, which sequentially embeds segments
and utterances and then reconstructs the whole utterance segment
by segment. Unlike the segmental audio word2vec where words are
reconstructed independently, this model implicitly incorporates word-
to-word dependencies by auto-encoding full utterances rather than
individual words, and results in better segmentation performance.'® For
acoustic input, the Mean Squared Error (MSE) is used instead of cross-
entropy as a loss function. In addition, a one-letter penalty is added
to discourage very short segments, and the boundaries are initialized
using automatic voice activity detection (VAD). Additional assumptions
are incorporated by limiting the number of words per utterance and
frames per word to 16 and 100, respectively. Experimental results
indicate that memory limitations—in the form of dropout or smaller
hidden layers—are useful for word boundary detection.

The problem of segmentation is intertwined with the problem of
clustering: identifying which segments are realizations of the same
underlying type. The repeated occurrence of patterns is a crucial ingre-
dient in statistical modeling. In speech, however, each occurrence of a
word type in an utterance is somehow unique due to the variable nature
of speech. Models that combine segmentation and clustering (Kamper
et al.,, 2017a,b) can improve the chance of identifying these repeated
patterns in a large corpus.

The general idea behind these joint models is to optimize both
segmentation and clustering in iterations: given an initial set of word
boundaries (e.g. uniform or syllabic boundaries), the segments are em-
bedded into fixed-dimensional vectors and clustered into K-word types.
Given this clustering, the segmentation is updated and optimized for
each utterance. The process repeats thus in iterations until convergence.
These models could potentially incorporate prior assumptions about
words, such as the number of word types in the lexicon (i.e. number
of clusters), the maximum number of syllables per word, and minimum
word length.

The Bayesian Segmental GMM (BES-GMM) (Kamper et al., 2017a),
jointly segments and clusters the input into hypothesized word types
using a Bayesian GMM, where each mixture component corresponds to
a word type. The GMM model can be viewed as a whole-word acoustic
model: it defines a probability distribution over words in the lexicon.
The segmentation and clustering are carried out iteratively: given a
random initial segmentation, the GMM is used to cluster the segment
embeddings; given the current GMM, a dynamic programming Gibbs
sampling algorithm is used to find high-probability segments based on
the current acoustic model. And so on until convergence.

The embedded segmental K-means (ES-KMeans) (Kamper et al.,
2017b) is an approximation of the BES-GMM model. Instead of Bayesian
inference, the segments are clustered using the standard k-means algo-
rithm. In speaker-dependent evaluation (Table 4), ES-KMeans achieves
similar word segmentation performance as BES-GMM while being faster
and more scalable. Like BES-GMM, ES-KMeans alternates between
segmentation and clustering to jointly optimize the cluster assignments
and segmentation. The objective function optimizes the segmentation
and cluster assignments jointly, where the clustering part is the same as
the K-means objective: minimizing the sum of square distances between
segment embeddings and their cluster means, weighed by the segment’s
duration (so the model prefers smaller segments). To bootstrap the

13 The two models were not compared directly on the same dataset, but
the difference is large enough to support this conclusion (51 vs. 43 boundary
F-score).



H. Aldarmaki et al.

Table 4
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Speaker-dependent evaluation of word segmentation models using word boundary and token F-scores. Results are reproduced from (Kamper
et al., 2017b) except for the working memory model, which is added from their original paper. The evaluation is performed on ZRC’'15 dataset,
Left: English, Right: Xitsonga. Results are calculated per speaker, then averaged.

Model English Xitsonga

Boundary F Token F Boundary F Token F
SylSeg (Rédsédnen et al., 2015) 55.2 12.4 33.4 2.7
BES-GMM (Kamper et al., 2017a) 62.2 17.9 43.1 4.0
ES-KMeans (Kamper et al., 2017b) 62.2 18.1 42.1 3.7
Working Memory (Elsner and Shain, 2017) 51.1 9.3 - -

process, word boundaries are initialized randomly. The segments are
then embedded into fixed-dimensional vectors using down-sampling,
and clustered with k-means. Given a clustering, the objective is reduced
to utterance-wise minimization of the squared distances between each
segment and the cluster mean, which is optimized using the Viterbi
algorithm.

To obtain the results in Table 4, additional constraints were used for
both BES-GMM and ES-KMeans to limit the possible word boundaries:
the oscillator-based syllable segmentation algorithm (Section 4.4) is
used to eliminate unlikely word boundaries, where each word can have
a maximum of six syllables. Additional improvements are achieved
by also specifying a minimum duration of 200 ms. The fixed-length
embeddings are obtained by down-sampling. These features are not
robust to speaker variations, which is why the models are evaluated
in a speaker-dependent settings. In Kamper et al. (2017a), they also
experiment with speaker-independent features following the approach
in Kamper et al. (2015), but the improvements are mediocre. Using
additional data with more speakers, the ES-KMeans model can be used
as a speaker-independent model; it achieved 52.7 boundary F-score and
13.5 token F-score in speaker-independent evaluation.

While joint clustering models surpassed other existing models in un-
supervised word segmentation, they still suffer from over-
segmentation—probably in part due to their simple unigram assump-
tion. Basically, these models do not consider word-to-word transition
probability; they only find likely segments that overlap in their acoustic
features. Qualitative assessment of the clusters show that they contain
acoustically similar segments, even if they do not map to the same word
label (Kamper et al., 2017b).

5. Cross-modal alignment

In the above sections, we described methods for automatically seg-
menting and clustering audio signals into phones, syllables, or words.
What remains is discovering the actual identity of those segments
(i.e. classification). Without direct supervision in the form of tran-
scribed speech, classification could potentially be achieved using un-
supervised alignment techniques similar to those applied in the text
domain for unsupervised cross-lingual word mapping (Lample et al.,
2018; Aldarmaki et al., 2018; Artetxe et al.,, 2018). Typically, this
is achieved using Generative Adversarial Networks (GANs) to map
sequences from the source to the target space; for ASR, this corresponds
to mapping speech to text segments using unrelated speech and text
corpora—in what we refer to as distant supervision.

Note that most proposed models that claim to be completely un-
supervised use some form of rudimentary supervision, either oracle
segment boundaries, or a labeled validation set. Without any form
of supervision, no model achieved remarkable accuracy until very
recently, where an unsupervised ASR framework was proposed that
managed to significantly improve performance without any form of
supervision (Baevski et al., 2021) . The majority of models operate at
the sub-word level, where a phoneme classifier is trained via distant
supervision using phonemized text. These models are discussed in
Section 5.1. A small subset of models operate at the word level, where
other forms of grounding, such as raw text or images, are used. We
briefly discuss these in Section 5.2.
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5.1. Phonetic alignment

For phones, distant supervision for cross-modal alignment has been
explored in Liu et al. (2018). Given a sequence of phone segments
(which, theoretically, can be acquired in an unsupervised fashion), the
segments are embedded into fixed-length vectors, and the standard
K-means algorithm is used to cluster those embeddings. The cluster
sequences are then used as input to the GAN in order to map each
cluster to a specific phoneme. The segmentation and clustering are
done first, then the GAN is trained on the cluster sequences and true
phoneme sequences from an independent text corpus.'*

A similar idea is employed in Chen et al. (2019) and Yeh et al.
(2018), where a GAN is used to learn a phoneme-based unsupervised
ASR. However, in these models, the segmentation and mapping are
learned jointly in an iterative manner: after an initial segmentation,'®
(1) a frame-level phoneme classifier is trained by matching the distribu-
tion of an independent phoneme language model, and (2) the phoneme
boundaries are updated using the learned classifier. These two steps are
repeated iteratively until convergence.

In Chen et al. (2019), the phoneme classifier is learned using a
GAN, then the GAN-generated labels are used to train phoneme HMMs
to update the boundaries by force alignment. In Yeh et al. (2018),
the phoneme classifier is trained using Empirical Output Distribution
Matching (Empirical-ODM) (Liu et al., 2017) to match the distribution
of the independent language model, and the boundaries are updated
using simple MAP estimation. HMMs are used as a final step to refine
the model. Both models incorporate an intra-segment loss to ensure that
frames within a segment have similar output distributions (to model
the internal consistency of phonemes). A comparison of these models
is shown in Table 5.

Recently, an unsupervised model based on wav2vec 2.0 (Baevski
et al., 2020) has been proposed for fully unsupervised ASR (Baevski
et al., 2021). The model also employs a GAN for phoneme mapping
similar to the approaches above, using phonemized text for distant
supervision. In addition to embedding the segments using the wav2vec
2.0 framework, PCA is used to retain the most salient features and
mean-pooling for obtaining fixed-size embeddings for each segment. A
silence label is added to the list of possible phonemes (and randomly
inserted in the phonemized text for consistency), which results in
significant performance gains. After GAN training, self training is used
to refine the model using HMMs or fine-tuning of the original wav2vec
model to improve the segmentation as well.'® This model achieves
state-of-the-art unsupervised ASR performance, significantly outper-
forming previously proposed models. The robustness of this model has
been recently investigated in Lin et al. (2021), where they conduct
experiments using different speech and text corpora. The lowest error
rate is achieved when large amounts of both speech and text drawn
from similar domains are used for training. Domain mismatch and
spontaneous speech are the main factors that degrade the perfor-
mance of unsupervised ASR, and could be mitigated to some extent by
pre-training and increasing the amount of data used for training.

14 A lexicon is used to transform the text corpus to phoneme sequences.

15 The initial segmentation is obtained using the unsupervised phoneme
segmentation approach described in Wang et al. (2017).

16 Refer to the paper for additional implementation details, including a
proposed automatic cross-validation metric for model selection.
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Table 5
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Cross-modal alignment results as phoneme error rate (PER). Results are reproduced from Chen et al. (2019) and Baevski et al. (2021). Matched
refers to the setting where text and speech are extracted from the same subset of TIMIT train, whereas in the non-matched setting different

subsets are used for speech and text.

Model Matched PER Non-Matched PER
Supervised

Phoneme classifier 28.9 -
RNN transducer 17.7 -
Unsupervised w. Oracle boundaries

cluster GAN (Liu et al., 2018) 40.2 43.4
Segmental empirical ODM (Yeh et al., 2018) 32.5 40.1
phoneme classifier GAN (Chen et al., 2019) 28.5 34.3
Unsupervised

Segmental empirical ODM + MAP (Yeh et al., 2018) 36.5 41.6
phoneme classifier GAN + HMM (Chen et al., 2019) 26.1 33.1
Unsupervised wav2vec (Baevski et al., 2021) 16.6 24.4
Unsupervised wav2vec + self-training (Baevski et al., 2021) 11.3 18.6

5.2. Semantic alignment

Chung et al. (2018) explores the unsupervised cross-modal align-
ment of speech and text embeddings using semantic embeddings ob-
tained by speech2vec (Chung and Glass, 2018), which are equivalent
to the text-based word2vec, as described in Section 3.2. The map-
ping is evaluated using oracle boundaries and automatic segmentation
methods using BES-GMM, K-means, and Syllseg (see Section 4). After
embedding, the k-means algorithm is used to cluster the segments
into potential word types. The mean of each cluster is used as the
unique embedding for the word type represented by that cluster. After
that, domain-adversarial training, similar to a popular approach used
in cross-lingual mapping of word embeddings (Lample et al., 2018),
is used to map the word embeddings from the speech to the text
domain (the training is similar to GANs). The mapping is evaluated on a
task related to ASR, which is spoken word classification, but it results
in very low accuracy. However, since the embeddings have semantic
features, the spoken segments are often mapped to semantically related
words, consistent with the behavior in cross-lingual word mapping. In
spoken word synonyms retrieval, the model achieves 57% precision@5
on English using true word boundaries and identities, compared to
67% using a dictionary for alignment. Using BES-GMM and k-means
(i.e. completely unsupervised setting), the performance drops to 37%
as a result of segmentation errors. Similar performance is achieved on
the spoken word translation task.

Another form of semantic grounding is using images to guide spo-
ken term discovery (Harwath and Glass, 2015; Harwath et al., 2016;
Chrupata et al., 2017; Harwath and Glass, 2019) and visually-grounded
language modeling (Dunbar et al., 2021). However, these models rely
on aligned image-caption pairs, and they can only be used in unsuper-
vised ASR if such alignments are available for text captions as well as
audio captions. One potential application of visually-grounded acoustic
models is in phonetic segmentation as recent analysis of activations
show some diphone structure in multimodal neural models Harwath
and Glass (2019).

6. Summary and discussion

We reviewed various research efforts in the direction of unsuper-
vised speech recognition, including unsupervised sub-word modeling,
spoken word embeddings, unsupervised term discovery, full-coverage
segmentation, and cross-modal alignment. In this section, we summa-
rize the main takeaways from this review and outline some of the
challenges and possible directions for future research.

The first three sub-tasks: sub-word and word-level feature represen-
tation, spoken term discovery, and segmentation, are often approached
concurrently, particularly in more recent models, as they have over-
lapping objectives. Full lexical segmentation, for example, followed by
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acoustic word embedding and clustering, essentially amounts to full-
coverage spoken term discovery. However, approaching the sub-tasks
individually can also have advantages leading to better performance
in the sub-tasks, and subsequently, better performance in the overall
unsupervised ASR pipeline. For instance, as observed in the few cases
where a segmentation model has been evaluated in both spoken term
discovery and full-coverage segmentation (see, for example, Kamper
et al. (2017b)), the full-coverage segmentation variants tend to have
lower precision compared with models that attempt to directly discover
recurring terms. Also, the state-of-the-art unsupervised ASR model
described in Baevski et al. (2021) has lower phonetic segmentation
accuracy compared to models that specialize in phonetic segmentation,
such as Kreuk et al. (2020a). The state-of-the-art could potentially
be improved by incorporating the best practices in each sub-task for
initialization or fine-tuning.

In sub-word and word modeling, the purpose is to finds suitable rep-
resentations that downplay irrelevant features such as speaker-specific
characteristics, while emphasizing features that distinguish between
different acoustic units; this can be carried out before segmentation
at the level of frames, which can essentially lead to acoustic unit
discovery, or after segmentation at the level of sub-word or word
segments. As shown in more recent iterations of the Zero Resource
Speech challenge, using Contrastive Predictive Coding (CPC) leads
to more robust frame-level features that are better in distinguishing
phonetic categories and are somewhat speaker-invariant (Dunbar et al.,
2020). In fact, contrastive learning has been shown repeatedly to be
a superior sub-word modeling method. In phonetic segmentation, the
state-of-the-art model (Kreuk et al., 2020a) uses contrastive learning
to learn frame-wise features, and phonetic boundaries are inserted at
points where adjacent frames exceed a dissimilarity threshold. CPC has
also been shown to lead to better acoustic word embeddings compared
with MFCC raw features (van Staden and Kamper, 2021).

Efforts in unsupervised speech segmentation include phonetic, syl-
labic, and lexical segmentation. Phonetic and syllabic segmentation are
more manageable than word segmentation, as they can be obtained
directly by analyzing the characteristics of the speech signal. The best
performing models in unsupervised phonetic segmentation, for exam-
ple, achieve a boundary F-score above 80. On the other hand, the best
word segmentation from raw speech achieve a boundary F-score around
60, and less than 20 token F-score. Earlier efforts in word segmentation
from phonemically-transcribed speech indicate that better results could
be obtained by modeling bigrams in addition to individual words, or
incorporating additional features such as pauses to identify boundaries
more robustly. Yet, most recent works on word segmentation from raw
speech do not model word dependencies. Explicit modeling of collo-
cations, in addition to incorporating pauses and utterance boundaries,
could potentially improve performance in these models. In addition,
while syllabic segmentation has been incorporated in some lexical
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segmentation models to constrain word boundaries around the onset
of syllables, the higher success of phoneme segmentation models could
be used to construct lexical models that incorporate the phoneme as a
building block.

In addition to segmentation, the choice of embedding and clus-
tering methodology is important for unsupervised ASR. Embeddings
that emphasize semantic features can be useful in unsupervised speech
translation or query-by-example search, but they are insufficient to
accurately label spoken words for automatic speech transcription. On
the other hand, embeddings that favor phonetic features are more
suitable for this task, but they are harder to align automatically with
text-based embeddings. Clustering based on phonetic embeddings could
lead to spoken term discovery, but due to variability in spoken terms,
the discovered clusters are often speaker-dependent. Some efforts in
this vein, such as using large datasets with multiple speakers or using
features that attempt to isolate phonetic from speaker-specific fea-
tures, led to minor improvements in speaker-independent evaluation,
but there is still large room for improvement to make unsupervised
methods robust to speaker variations.

Distant supervision using Generative Adversarial Networks has been
explored recently for mapping speech segments to corresponding text
segments, using both phones and words as segmental units. Compared
to word-based models, phone mapping has shown better promise, with
error rates below 45%. The state-of-the-art model in this category
achieves remarkable success (around 11% word error rate in the given
benchmark) by incorporating a GAN for phone mapping in addition to
refining the segmentation and embeddings using self-training. Word-
level cross-modal mapping, on the other hand, has only managed to
retrieve semantically related words, which could be useful in transla-
tion tasks, but not in ASR where exact matches are required. A potential
future development could involve the combination of phone and word
mapping, where phonetic mappings provide bottom-up labels, while
semantic lexical mapping provide a top-down signal to constrain and
improve the lower-level alignments. Recent unsupervised ASR models
that achieve encouraging results (Baevski et al., 2021) still operate
at the phonetic level, and so they require phonetic or phonemic text
transcriptions for cross-modal mapping. Operating at the word level, on
the other hand, would make it possible to align speech with raw text;
however, such models rely on the lexical segmentation accuracy and
may require acoustic word embeddings that encode semantic features
such as speech2vec (see, for example, Chung et al. (2018)).

A sizeable gap still exists between supervised, semi-supervised, and
unsupervised models, but recent efforts show that closing that gap
is not only possible, but could just be a matter of finding the right
combination of existing strategies to achieve optimal performance.
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